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Outline  
 

ÅBrief survey of recombination theory  

ÅLAr ð ideal liquid vs real liquid  

ÅApplication of Birks and Box model equations  
o Introduce a modification to the Box model  

ÅRecombination simulation  
o Focus on angular dependence  

ÅArgoNeuT LAr TPC in the NuMI neutrino beam  
o track and calorimetric reconstruction  

ÅA novel(?) stopping particle ID scheme for selecting 
protons and deuterons  

ÅAngular dependence ð protons  

ÅExtend to higher stopping power - deuterons  
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- 

No angular dependence 

Electron lifetime  



Y3(X) = recombination factor  R  

Ą fraction of electrons that escape vs E field strength X 

Assumptions  
Recombination ~ charge density 
 
No Coulomb interactions  
 
Ion mobility = electron mobility  
 
Electrons & ions have the same 
Gaussian distribution  

This analysis 
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Birks model (1951) 



Liquid Argon  
A Special Medium 

Box Model  

Ignore electron diffusion and 

ion mobility in LAr  

Å High electron mobility  

Å Electron MFP = 20 nm  

ÅOnsager radius = 130 
nm ( ECoulomb  = Ethermal ) 

Å No vibration levels 
available Ą ~1 nsec  
thermalization time  

Å Electrons in Coulomb 
field or strong external 
field, E, are not in 
thermal equilibrium Ą 
diffusion equations 
not fully applicable  

 

Thomas & Imel, Phys Rev A 36 (1987) 614 

a = 1 in the canonical model. 
We allow it to vary in the 
recombination fits  
 
We set x = b (dE/dx) and fit b in the 
recombination fits  
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E  = E field 



Liquid Argon  
As a Real Detector Medium 

¸ 1 

Amoruso, et al NIM A 523 (2004) 275 d-rays 

Impurities  

Ions can attach to water molecules, 
screening the Coulomb field.  
Debye length lD= distance at which 
screened potential E = Ethermal  

lD=  400 ɬ 600 nm in ArgoNeut data  
Not negligible?  

Measurement 
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Measurement 

Theory R Ą 0 as E Ą 0 
Heavy ions: R = 0.003 
Electrons: R = 0.35  

Doke, et al Chem. Phys. Lett 115 (1985) 3434 

Birks form  



Application of  Birks and Box 
forms to reconstruction  

Inverse Birks equation is   
< 0 at large dQ/dx 

Inverse Box equation is 
well behaved 

But Box model fails to 
match data at low dE/dx 
 
Solution: Let a < 1 
Ɂ,ÖËÐÍÐÌËɯ!Ößɯ,ÖËÌÓɂɯ
ala ICARUS AB = 0.8 
 

Example with a = 0.93    
b = 0.32 

 

 a = 1 
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 a = 0.93 



Recombination Simulation  
 

Stopping proton: dE/dx = 
24 MeV/cm Ą rk = 10 nm  
 
MIP: dE/dx = 1.7 MeV/cm 
Ą rk = 50 nm  

Initial conditions:  
ro = 0.5 nm, Eko = 5 eV  
 
After thermalization:  
<ro> ~ 2500 nm, <Eko> ~ 0.01 eV 
 
Simulation includes motion due to 
(periodic) Coulomb field, external E 
field and atomic collisions, escape 
and recombination criteria  

Jaskolski, Wojcik J. Phys. Chem. A 115 (2011) 4317 

Sim with d-rays 
ICARUS  

E field 
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Recombination Simulation  
Angular Dependence 

Modify simulation to allow non -
perpendicular E  field  
 
Simulation runs for rk = 10, 20, 
30, 40, 50 nm and f = 40o, 50o, 
60o, 80o  
 
Ratios of escape probability, R. 

vs dE/dx Ą 
 
Simulation (data points)  
R ICARUS with  E ĄE sin f (curves) 
 
Significant angular dependence 
expected from theory and 
simulation  
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M. Wojcik  



ArgoNeuT  
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481 V/cm 

C. Anderson, 2012 JINST 7 P10019 



Stopping Particle 
Stopping Power 

Bethe-Bloch eqn has power 
law dependence with 
residual range (R) near the 
stopping point  

Note the weak dependence on b 
Trange (MeV), R (cm) 
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1) Reconstruct 3D tracks = cluster 
of 3D space points each with a 
measurement of charge Q 
deposited using the area of a 
Gaussian fit (collection plane) 

2) Find dQ/dx using angle 
corrected distance between 
space points 

3) Correct for electron lifetime  
4) Find (dE/dx) calo using Birks or 

Box equation 
5) Sum up to find kinetic energy 

deposited = Tcalo 

6) Find Trange using track length 
assuming a proton hypothesis 

7) Eliminate lightly ionizing ptcls 
by requiring Tcalo > 0.5 Trange 

Collection 

Induction  

Time 

    ADC  

Select Highly Ionizing Particles 
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Particle Identification  
with minimal bias 

Algorithm  
 
Set b = constant = 0.42 
 
Find A i = (dE/dx) calo x R0.42 for 
each space point i on a track 
 
Define PIDA = < A i > = average 
value for the track  
 
Histogram PIDA and look for 
bumps Ą 

Requirements 
Protons: 14 < PIDA < 21 
Deuterons: 25 < PIDA < 33 
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30x more protons 
than expected 
from NC n 
interactions Ą 
neutrons 

PIDA (MeV cm 0.58) 
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ArgoNeut  
data 


